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NATTONAL AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-81

METHODS AND VELOCITY REQUIREMENTS FOR THE RENDEZVOUS
OF SATELLITES IN CIRCUMPLANETARY ORBITS

By William E. Brunk and Richard J. Flaherty

SUMMARY

In the future of space flight there will be occasions when it is
necessary to perform a rendezvous between two satellites in orbit around
a planet. For a spherical planet methods of rendezvous are considered
in which the total velocity required is kept near a minimum. It is
assumed that only one of the satellites is maneuverable and that all
velocity increments are applied tangential to the orbit. The problem
is further simplified in that the rendezvous takes place outside the
atmosphere and the motion of each satellite is determined from a solu-
tion of the two-body problem. Two basically different sets of initisal
conditions are studied. In the first, the maneuverable satellite is
launched directly into the rendezvous, while, in the second, both satel-
lites are in orbit before a rendezvous is attempted. Since the Earth,
like some of the other planets, is not spherical, the effects of the
Earth's oblateness on the methods of rendezvous are presented.

INTRODUCTION

One of the problems that will arise in space flight is the deliber-
ate meeting of two or more satellites. Such a meeting is desirable for
many reasons. It will be necessary for the transfer of personnel and
supplies from the Earth to a semipermanent space laboratory or for the
assembling of subsystems for the construction of either a permanent sat-
ellite base or large interplanetary expeditions. When manned interplane-
tary flight becomes a reality, situations may arise where it would be
desirable to explore the surface of other planets from smaller space ve-
hicles launched from the large interplanetary vehicle which remains in
orbit outside the atmosphere of the planet. Recovery of the exploring
vehicles will necessitate a meeting with the orbiting vehicle. 1In ref-
erence 1 it is shown that considerably less total weight is required for
a manned Interplanetary trip if the crews are returned to the surface of
the Earth in small ferrying space vehicles launched from the Earth rather
than by landing the interplanetary vehicle.



The type of meeting required for the previous examples will be
called rendezvous. It differs from a collision in that ideally there
will be no impact. In an ideal rendezvous the orbits of the two ve-
hicles are identical, while in a collision the orbits may be different
but must intersect.

Although a rendezvous can be performed between any number of ve-
hicles, the problems are presented more clearly by considering a rendez-
vous between two vehicles. In this report the problem of rendezvous be-
tween two vehicles is presented. Certain assumptions are made which,
while limiting the usefulness of the results, enable the basic ideas and
methods to be more easily understood. This report is intended to pre-
sent the general problem rather than a detailed analysis of specific
cases. A study of this type gives an indication of both the velocities
and times required to perform a rendezvous. This information is useful
in estimating propulsion and possibly guidance requirements.

The problem considered is that of an ideal rendezvous in which the
motion of each of the two vehicles is the same as if the other were not
present, that is, there is no attraction between the two vehicles. In
the actual rendezvous a gravitational attraction exists between the two
vehicles which tends to pull them together. This effect is only appre-
ciable when the vehicles are very close to each other and even then is
very small. It is also assumed that the vehicles are superimposed when
the rendezvous is completed. The rendezvous is to be performed outside
the atmosphere, and all velocity increments given are assumed to be exact
both in magnitude and direction.

Since the motion of a satellite is determined by the gravity field
in which it travels, i1t is necessary to assume some force field. For
simplicity, an inverse-square, central force field is assumed correspond-
ing to a spherical planet. Since this assumption is not exact in the
case of the Earth, which has nearly the shape of an oblate spheroid, the
effects due to the Earth's oblateness on the presented methods of rendez-
vous are considered.

There are a number of reports, such as references 2 to 7, which
touch on one or more of the ideas presented herein.
RENDEZVOUS

The problems involved in performing an ideal rendezvous are simply
stated. It is necessary to perform such maneuvers as required to place
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two space vehicles at the same location in the same orbit. As no re-
strictions are placed on the initial positions of the two vehicles,
there are an unlimited number of different starting situstions. In ad-
dition, there are an infinite number of possible transfer trajectories
which might be used for any given situation. In order to reduce the
total number of possibilities, certain restrictions will be applied
herein. These restrictions are:

(1) Only one of the vehicles will be maneuverable.

(2) Only those transfer orbits will be considered which keep the
required velocity close to a minimum.

(3) With one exception, only impulsive thrust will be considered.

(4) Except for plane changes, all velocity increments will be
applied tangentially.

Restricting the maneuverability to only one vehicle is quite rea-
sonable. If both vehicles were maneuverable, extra propellant would
have to be carried by both vehicles and also the orbits of both vehicles
would be changed. 1In the case of smaller transfer vehicles bringing
supplies to a space laboratory, the transfer vehicle would do all the
maneuvering so that the laboratory would remain in its original orbit.
This restriction would be especially important if more than a single
rendezvous was to be made.

In any series of transfer orbits taken by the maneuverable vehicle
to complete a rendezvous there are basically two variables, velocity in-
crements needed and total time required. In general, these variables
are not independent; however, it may be possible to find several values
of one for a single value of the other. For example, there may be several
transfer trajectories requiring different total times to achieve a rendez-
vous but all requiring the same total velocity increment. It is possible
to choose transfer orbits such that either the total velocity increment
or total time is at a minimum. Since, at present, the allowable amount
of propellant is critical, transfer orbits for minimum total velocity
required are important. For the most part, this is the criterion used
herein. However, for certain situations requiring a rendezvous, the
transferring of personnel, for example, the total elapsed time is crit-
ical. In such cases, transfer trajectories requiring minimum total time
might take precedence over minimum-energy trajectories. There are also
situations where, because of an upper limit on both the allowable veloc-
ity increments and total time, a compromise transfer trajectory must be
used.

The transfer trajectory also depends on whether continuous or impul-
sive thrust is used. Restriction (3) indicates that this study is



limited, with one exception, to impulsive thrust. Until continuocus-low-
thrust devices are developed that are usable in space vehicleg such as
transfer vehicles, it appears that short-duration rockets will have to
be used. A comparison is given herein between continuous thrust and im-
pulsive thrust for rendezvous in one specific case. The comparison shows
that in this case the velocity requirement is the highest for continuous
thrust.

In general, the impulsive velocity increment could be applied in
any direction with respect to the velocity of the space vehicle. However,
when the new orbit is to be in the same plane as the original orbit, the
velocity increment must be given in that plane. Since velocities add
vectorially, the maximum change in resultant velocity for a given velocity
increment is obtained when the velocity increment is added tangentially.
It can easily be shown that, if it is desired to transfer to an auxiliary
orbit to change pericd or to transfer between two orbits, at least one of
which is circular, the smallest velocity increment required is one applied
tangentially. Although this result is not always true for a transfer be-
tween elliptic orbits, it can be sald that, in general, tangentially ap-
plied velocity increments are close to the smallest required and for this
reason are the only ones considered herein.

In spite of these restrictilons, the number of peossible initial con-
ditions makes the number of methods of rendezvous very large. In order
to reduce the number of cases studied, the initial conditions are divided
into two classes. The first of these, to be called direct rendezvous,
occurs when the nonmaneuverable satellite is in orbit but the maneuver-
able satellite has not been launched. The second class, to be called
orbital rendezvous, includes all cases where both satellites are in orbit
previous to any rendezvous attempt. Since this second class is very
large, the method of anelysis will be the following. The entire proce-
dure of rendezvous will be presented for certain special initial condi-
tions, while a discussion of possible rendezvous techniques is presented
for any initial conditions.

Direct Rendezvous

Basically, direct rendezvous is the simplest of all methods of ren-
dezvous. It is performed by launching the maneuverable satellite into
the same orbit as the nommaneuverable satellite at such a time that the
two satellites will be at the same point when the maneuverable satellite
enters orbit. This method requires the minimum amount of total velocity,
that is, only that velocity required to put the second satellite in the
same orbit, and is completed in the shortest possible time. Despite the
apparent advantages in this type of rendezvous, difficulty in satisfying
the necessary requirements makes it often more difficult to perform a
direct rather than an orbital rendezvous.

ARSI
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Four requirements which must be met in order to perform a direct
rendezvous are:

(l) The latitude of the launching site must be no greater than the
inclination of the orbit of the nonmaneuverable satellite.

(2) The maneuverable satellite must be launched into an orbit co-
planar with that of the nonmaneuverable satellite.

(3) The orbits of both satellites must be identical.

(4) The maneuverable satellite must coincide with the nonmaneuver-
able satellite at the point where the former enters the orbit.

At any given latitude f, a satellite can be launched into any
orbit having an inclination 1 greater than or equal to B. (All
symbols are defined in appendix A.) Thus, orbits having any desired
inclination may be initiated from the equator, while only polar orbits
are obtainable from polar launching sites. As shown in appendix B, the
cost of launching into a circular orbit from a nonequatorial site is no
greater than from an equatorial site, provided the inclination of the
desired orbit is not less than the latitude of the launching sgite.

If the orbit of the nonmaneuverable satellite is outside the planet's
atmosphere and the planet is a sphere, then the orbit will remain "fixed"
in space and the planet will rotate beneath it. However, for a person
standing on the planet, the plane of the orbit appears to rotate about
the axis of the planet and passes through each point having a latitude
no greater than the inclination of the orbit. With one exception, the
orbital plane passes through each point at least twice during a sidereal
day. A sidereal day is defined as the length of time for the planet to
complete a single rotation with respect to the stars. On the Earth, one

sidereal day is equal to 2315604.1°5 of mean solar time. The one excep-
tion to the double passage of the orbital plane is at the point where

the latitude is equal to the inclination, and there only a single passage
occurs. The time in sidereal days between successive passages 1s given
by

Aty = n/x } "
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where cos n = tan B cot i. If Aty 1s the time between the first and
second passages, At, 1is the time between the second and third passages,
and so forth. For an equatorial orbit, B =0 so that cos 7n = 0; there-
fore, Aty = At = 1/2. When 1 =8, cos 1=1 so that At) = 0, and
there is only a single passage of the orbital plane. A satellite could
be launched into this plane every time the plane passes over the launch-
ing site. Thus, coplanar launchings can, in general, be carried out
twice a day-.

To have the orbits of both the maneuverable and nonmaneuverable sab-
ellites identical, it 1s necessary that the maneuverable satellite have
the correct velocity and direction at entrance into orbit. If the non-
maneuverable satellite was launched from the same launching site and in
the same direction, duplication of the initial entrance conditions would
be sufficient. However, if the nonmeaneuverable satellite was launched
from a different launching site or in a different direction, the desired
initial conditions would, in general, have to be calculated.

The fourth requirement can be met most simply by predetermining the
period P for the nonmaneuverable satellite. Choosing the period deter-
mines the size of the semimajor axis since

2ﬂa3/2

P=-—l7'é— (2)

o)

where a 1is the semimajor axis and u 1s a constant for each planet.

To simplify the analysis, it will be assumed here that all the satellites,
including the nommaneuversble one, are launched from the same site and
follow the same launching trajectory. However, the fourth requirement
can be met even if these assumptions are not made. The analysis is sim-
ilar but more involved than that given here.

From the discussion of the second requirement, whenever 1 > p
there are two times a day when the maneuverable satellite can be launched
into the orbit of the nonmaneuverable satellite. At one time the maneu-
verable satellite must be launched in a northeasterly direction, and at
the other time it must be launched in a southeasterly direction. This
is shown in sketch (a) for circular orbits. The sphere is the surface
which contains the satellite orbits. The eguator and north and south
points shown are extensions of the planet's equator and polar axis. The
orbit is shown at the two times that it crosses over the launching site
at 0. The two points A and B are the points where a satellite
launched from 0O with the assumed launching trajectory will enter the
orbit. These are called the north and south entrance points, respectively,
and for a given orbit are fixed relative to the launching site. The
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nonmaneuverable satellite is said to pass through an entrance point when
it is at point A when on path cd or at point B when on path ab.

In order to perform a direct rendezvous it is necessary for the non-
maneuverable satellite to pass through an entrance point. If the non-
maneuverable satellite passes through one of the entrance points at
launching, it will pass again through the same entrance point if it is
an orbit chosen to have a period P 1in sidereal days where

P =m/n (m,n are integers) (3)

The period is the ratio of the number m of sidereal days to complete
n revolutions. All the material given thus far for this requirement is
applicable to elliptical as well as circular orbits.

If only circular orbits are being considered, many other periods
exist for which a direct rendezvous is possible. If the nonmaneuverable
satellite is launched in the northeast direction, entrance point A, in
the northern hemipshere, it will pass through entrance point B at some
later time if



Q
(n + ;)P = nT + Aty (4)
where

a = cos"l<?%2—é> (5)
sin 1

T is one sidereal day and P is in sidereal days. That is, the time

required to complete an integral number of revolutions plus that fraction

of a revolution to go from latitude B to latitude  again (see

sketch (b)) must be equal to an integral number of sidereal days plus the

Equator

(b)

time for the Earth to rotate through the angle 271 which from equation
(1) is Aby. I the nonmaneuverable satellite is launched in the south-

east direction, entrance point B, it will pass through entrance point A
at some later time if

( - %)P = ml - Aty (6)

If the launching site is in the southern hemisphere, equation (4) applies
to a southeast launching and equation (6) to a northeast launching.

32%—H
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Orbital Rendezvous

When both satellites are in orbit before an attempt is made to
rendezvous, the technique used will be called orbital rendezvous. If
the initial orbit of the maneuverable satellite is in the same plane and
entirely within the orbit of the nommaneuverable satellite, the total
velocity cost can, in certain cases, be no greater than for a direct
rendezvous. In other cases, especially when the two satellite orbits
are not coplanar, the total cost in velocity can be much greater than
for a direct rendezvous.

In general, to rendezvous, there are four maneuvers o be
considered:

(1) The orbits of the two satellites must be made coplanar.

(2) The orbits must be made tangent at a point.

(3) The periods must be altered so that the satellites meet.
(4) The velocities must be made equal when the satellites meet.

These maneuvers will be discussed separately in the following para-
graphs. It should be remembered that in many cases the maneuvers will
not be performed separately or even in the order given.

Making Orbits Coplanar

To change the orbit plane of a satellite by an angle ¥ without
altering the orbital speed, it is necessary to apply a velocity increment

P

equal to 2 sin % times its velocity perpendicular to the radius at an

o
angle of 90 + % with respect to this velocity. The velocity require-
ments for various values of T are shown in figure 1. These must be
applied in a plane normal to the radius vector. There are two points in
the orbit where a satellite could, with a single velocity impulse, change
from its plane to a desired plane. These are the points where the orig-
inal orbit intersects the desired plane. If the satellite velocity per-
pendicular to the radius 1s lower at one of these points, it is the most
economical one at which to make the change unless this makes the follow-
ing maneuvers more costly. In some cases, 1t is advantageous to change
the orbit in the initial plane before making a plane change.

In this report, velocity increments in maneuvers except plane
changes are added tangentially, and only tangent transfer orbits are
considered. Since velocities add vectorially, the biggest change in
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magnitude for a given velocity difference Av occurs when Av is

added or subtracted in the same direction as the original velocity. A
rendezvous can be performed in less time by using nontangential transfer
orbits, but these generally become costly in power because of the direc-

tion changes involved. This cost 1n velocity is 2 sin-% times inditial

speed if the initial speed 1s kept constant. A 5°44' direction change
requires an additional velocity 0.1 times the initial velocity.
Making Orbits Tangent
When the orbits are coplanar, it is necessary to change the orbit
of the maneuverable satellite to one tangent to that of the nonmaneuver-

able satellite. Some general equations that are very useful are:

(1) Semimajor axis of an orbit:

a=—2Hh (7)

v2 ny, 2
1 Az -l
== i% 1 +q L + —5——— cos ¢ (9)
r h "
v2 3
Since h, the angular momentum, and 5 - the total energy, are con-

stant for an orbit, all that are necessary to determine an orbit are the
velocity vector and radius vector at one point. The angular momentum h
is equal to the product of the radial distance times the velocity perpen-
dicular to the radius. .

If the satellites are in two arbitrary elliptical orbits, it is dif-
ficult to find an explicit solution for the velocity increment to be
applied tangentially at some point on the maneuverable-satellite orbit
that would put the satellite into a transfer orbit tangent to the de-
sired orbit. If the maneuverable-satellite orbilt were entirely inside
or entirely outside the orbit of the nonmaneuverable satellite, the tan-
gential transfer orbit could be started at any point in the maneuverable-
satellite orbit. However, 1f the orbits are intersecting, the transfer

22g-H
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can be made only from certain portions of the maneuverable-satellite
orbit. The total velocity requirement for the rendezvous is dependent
on the choice of the point from which to start the transfer orbit.

For a given point on the maneuverasble-satellite orbit, a tangential
transfer orbit can be found by varying the magnitude of the tangentially
applied velocity increment. Properties of orbits that are useful are:

(1) Any two Keplerian orbits, conic sections, cannot intersect at
more than two points unless the orbits are identical.

(2) If two orbits have only one intersection point and at least one
of the orbits is elliptical, the orbits are tangent at this point.

The desgired velocity increment gives a real single-valued solution
for @p, the angular distance from the perigee of the transfer orbit,
when equating the right side of the orbit equation (9) for the transfer
orbit to the right side of the same equation for the nonmaneuverable-
satellite orbit. To account for the orientation of these orbits, ¢p - ®
must be substituted for O the angular distance from the perigee of

the nonmaneuverable satellite. Here w 1s the angular distance from
the perigee of the transfer orbit to the perigee of the nommaneuverable-
satellite orbit (see sketch (c)).

_/,,,,——Tangent point between tran§fer or?it
and nonmaneuverable-satellite orbit

Transfer orbit

Initial orbit of
maneuverable satellite

Center of
planet

Nonmaneuverable-
satellite orbit
perigee

Perigees and tangent point of both
transfer and initisl maneuverable-
satellite orbits

(c)
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If the tangential velocity is varied at one of the apsides (perigee
or apogee), ® will stay constant unless the velocity is varied through
circular velocity. In the latter case, there would be a 180° change in
w, that is, what was the perigee point would become the apogee or vice
versa. If the veloecity is not varied at an apsis, ® must be recalcu-
lated for each velocity increment tried. When the tangential transfer
orbit is to be initiated at an apsis (see sketch (c)), a good velocity
to start the solution with would be the velocity which would put the
other apsis on the nonmaneuverable-satellite orbit. This velocity can
be easily obtained (see next paragraph) and would give a tangential
transfer orbit if = 0° or 180°. If % 0° or 180°, this velocity
gives a velocity slightly higher than that required for a tangential
transfer orbit. The correct velocity for the transfer can be found by
reducing this velocity until a real single-valued solution for ¢p is
found. For special cases, explicit solutions for the velocity require-
ments to transfer between orbits can be determined.

If the major axes of the maneuverable- and the nonmaneuverable-
satellite orbits fall on the same line (w = 0° or 180°), the velocity
requirenment can be determined from equation (7). If at least one of

the orbits is circular, this requirement is met automatically. Let
be the major axis of the tangent transfer orbit (see sketch (d)).

Orbit 2

Transfer
orbit

Orbit I

From equation (7)

AA ]
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Solving for vy, p gives
2 1
Vpp = N(’g - -") : (10)

The Av to be added at distance b to change the satellite from orbit
1 to the transfer orbit is

Awb = Vpp - vl,b (ll)

Similarly, the Av which would put the satellite in prbit 2 into the
transfer orbit at distance d 1is

Avg = Vo g - V2,4

where

N NP
T,d = u(3.-23113

The equations are general, and in sketch (d) orbits 1 and 2 could also
be drawn as intercepting, with the circular one on the inside, or with
both elliptic with their major axes on the same line. However, b and
d must always be in opposite directions on the major axis of the trans-
fer orbit.

In transferring between elliptical and circular orbits, the sum of
the two velocity increments will be a minimum if the following rules are
adhered to:

(1) If the apogee of the elliptical orbit is less than the radius
of the circular orbit, the transfer should be made to or from perigee.

(2) If the apogee is greater than the radius of the circle, the
transfer should be made to or from apogee.

Altering the Perlod to Make Satellites Meet

When the orbits of the maneuversasble and nonmeneuversasble satellites
are tangent, it is necessary to bring the two satellites together at
the point of tangency. ZF¥or example, suppose that at some time the maneu-
verable satellite will pass through the tangent point 3 minutes after the
nonmaneuverable satellite. If, at the time It passes the tangent point,
the maneuverable satellite is put into & new orbit with a period 3 min-
utes less than that of the nonmaneuverable satellite, both satellites
will meet on their next pass through the tangent point. If the new
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period were 1.5 minutes less than that of the nonmaneuverable satellite,
the two satellites would meet after two revolutions. This can be ex-
pressed as

At
P, - Pp= N (12)

where Pp 1is the period of the new transfer orbit to make up the time
difference At in NT revolutions. The time difference At is taken

as positive if the nonmaneuverable satellite leads the maneuverable sat-
ellite past the tangent point.

If two satellites are in tangential but not identical orbits, their
periods will be different. In this case, the total velocity required to
complete the rendezvous can be made as low as that required to transfer
between the orbits. The satellites should remain in their initial tan-
gential orbits until the longer period satellite is in the lead with the
difference in time of passage of the tangent point less than the differ-
ence in periods.

Since the period of the maneuverable satelllite must be altered at
the time 1t passes the tangent point, it is necessary to know in advance
the value of At. In order to obtain At, the location of each satellite
in its orbit must be known at some specific time. The time for each of
the satellites to travel from this location to the tangent point can be
obtained from a knowledge of the time required to reach each of the
points from the perigee point. The time of flight from perigee to a
point at distance r 1is

2
VoI
3/2 (2 - Pf)% -1
t = 2 2y \3/2 sin™ 5 = +3|*
VpTp VPP
“u - -1
N 0

2 (2 vy
3/2 (L) P L), ,x VPP
P VA\rp) \# e H (13)

where the - is used up to the apogee point and + is used after apogee.

In terms of the periocds of the maneuverable and transfer orbits,
the Av to be added at the point of tangency to alter the peried is

22e-d
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from equations (2) and (7) where r is the distance of the tangent

point:
21 21U 2/3 21 ann 2/3
Av = 4= - 5= -4/= - (== (14)
T PT r Pm

Rendezvous Between Satellites in Circular Orbits

In the special case of going from one circular orbit to another,
it is possible to wait for the correct angular relation before entering
the transfer ellipse so that the satellites will meet on the first pass
of the maneuverable satellite through the tangent point. For a transfer
from the inner to the outer orbit, the outer satellite must lead the
inner satellite by the angle

140 3/2
8,2 = 18011 - (20 ) , deg (15)

when the maneuverable satelllite enters the transfer orbit. Here, p is
the ratio of the outer to the inner orbital radii. In the reverse case,
transfer from the outer to the inner orbit, the outer satellite must

lead by an angle
3/2
1+
6, 1 = 180 [(——2——9> - 1], deg (16)

when the maneuverable satellite enters the tramnsfer orbit. In terms of
the inner circular orbit velocity vc 17 the magnitudes of the velocity
increments to change between the c1rcular orbits and the transfer orbit
are, for the inner orbit,

Av
Lo avy 42— -2 (17)
Vc,l 1+p

and, for the outer orbit,

Av

2 1 2

T\ =‘/— <1 - > (18)
VC;J.- 2 0 1+ p

Equations (15) to (18) are derived in appendix C.

The quantities AV, AV, @l,z, and @2)1 are plotted in figure 2
as a function of the radius ratio p. At radius ry, ANl is added to
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go from the circular to the transfer orbit or subtracted to go from the
transfer to the circular orbit. Likewise, at radius rp, AV, is sub-
tracted to go from the circular to the transfer orbit or added to go
from the transfer to the circular orbit.

From figure 2 it can be seen that it is more costly in velocity to
transfer a satellite between circular orbits with radius ratios greater
than about 3.2 than it is to escape the gravitational field of the
planet from the inner orbit since the escape velocity is only W/E times
the circular velocity.

Rendezvous Between Satellites in the Same Circular Orbit

If two satellites happen to be in the same circular orbit, two
methods can be used to rendezvous them. One method is to alter the
period of the maneuverable satellite as was described for tangent or-

C)
n E—GT)'. The
angular separation between the satellites © 1is considered positive
when measured from the maneuverable to the nonmaneuverable satellite
in the direction of revolution. Substituting for At in equation (12)

gives
P
® T
360 © NT<1 - F) (19)
n

Substituting equations (7) and (2) in the form

bits. For two satellites in the same circular orbit, At = P

_ 2
P= o\ 2/ 2
@E_V>
T
gives
' 2 2 3/2
_iln 1. avg = Vg
360N oyl - (v + Aw)z
(6] C
This can be written as
3/2
3?01\1 =1- - 5 (20)
1-2AV - AV
where
N
-

22¢-d
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or

L 2/3
1 - 360N

This equation is plotted in figure 3. The magnitude of the negative
velocity increments is limited to that which would lower the perigee

point to the atmosphere.

Since the velocities of the satellites need to be the same when
they meet, another Av, equal but opposite, is required, which makes the
total cost 2 Av. The total required velocity can be very small by mak-
ing the number of revolutions N large. A dimensional plot of this is
shown in figure 4 for a 300~-mile orbit about the Earth.

The second method 1s to change the circular velocity with an impulse
and then balance the excess or defect in centrifugal force with a contin-
uous radial thrust to keep the maneuverable satellite in the same circu-
lar orbit while it is catching up to the nonmaneuverable satellite (+Av)
or while the nonmaneuverable satellite is catching up to it (-Av). This
method is often considered but is much more costly in velocity.

The velocity cost of initiating and stopping the maneuver is ]2 Av‘.
The cost of holding the vehicle in the same orbit can be expressed as a
velocity because it 1s an acceleration for a length of time. Centrifu-
gal acceleration CA 1is proportional to velocity squared if the radius
is constant. Since the vehicle is orbiting, CA = g, =V /r:

Vo + Av 2
CA + ACA = gn\——

Ve

v v

2 2
The excess or defect ACA = gr[% Av + Géz):] where g, = gR<§> .
c c

The length of time this acceleration would be needed is equal to
the distance divided by the rate of closure:

. D
Time = v

Time multiplied by acceleration 1s equivalent to linear velocity for

calculating rocket propellant ratios so that the velocity equivalent of
balancing the ACA is

2
2 Av Av D 2 Av
+ [2X = = 2+ 22\D
gr': Ve (Vc> ] AT <Vc v2>

c
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Thus, the maneuver requirement in linear velocity is -
Requirement = |2 Av| + g, Z LAy (22)
Vo 2
c
Letting g, = pL/r2 and r = u/vg gives
4
gy = Vo/k
td
and IR
0N
D=ﬂl®'r=ﬂ‘®‘_|‘i R\
180 180 .z
c
for © in degrees. Substituting into equation (22) and dividing by v,
yield
. . o
Velocity requirement _ Av + 2+ Av ﬁlgé (23)
Ve Ve Ve
This equation is plotted in figure 5. A dimensional plot is given in
figure 6 for a 300-mile-altitude orbit about the Barth. Comparing veloc- '

ity requirements of figure 5 with those of figure 3 shows the greater
velocity needed in the method balancing the centrifugal force.

General Remarks on Orbital Rendezvous

It should be remembered that in an actual rendezvous one would com~
bine plane changes with changes in the orbit whenever it would reduce
the total rendezvous velocity requirement. Also, it 1s best to launch
the maneuverable satellite into an orbit that is in the same plane and
tangent to the perigee point but otherwise entirely within the orbit of
the nommaneuverable satellite. In this case, it is possible to make an
orbital rendezvous without exceeding the total velocity required for a
direct rendezvous.

EFFECTS DUE TO OBLATENESS

In the previous sections of this report it has been assumed that the
planets are spheres and, therefore, that the gravitational attraction
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acting on the satellites is an inverse-square central force. However,
because of rotation about thelr own axes some of the planets have the
form of an oblate spheroid. An oblate spherold is the solid body formed
when an ellipse is rotated about its minor axis. A measure of this
"flattening" of the planet is its oblateness, which is defined as the
ratio of the difference between the equatorial and polar radii to the
equatorial radius. The value of oblateness for the planets ranges from
zero for Mercury and Venus to 1/9.5 for Saturn. The oblateness of the
Earth is 1/297.0.

The motion of a satellite in the gravitational field of an oblate
body is different from its motion about a sphere. The effects of the
Earth's oblateness on the motion of a satellite have been considered in
several reports (refs. 8 to 13). Similar studies can be made for orbits
about the other planets.

In the remainder of this report, the effect of oblateness on the
results obtained in the previous sections will be considered. The dis-
cussion will be limited to the case of the Earth. Since many of the
papers dealing with motion about the oblate Earth are limited in types
and positions of orbits considered, the material used herein was taken
from reference 8. In this reference, the general case is solved by a
method of perturbations for an orbit with eccentricity less than 0.05
and any inclination. The principal assumption made in reference 8,
other than that of limited eccentricity, is that atmospheric effects are
neglected. This is compatible with ‘the assumption that the rendezvous
will take place outside the atmosphere. The assumption of small eccen-
tricities is the most limiting, but it is indicated in the reference
that similar effects due to oblateness are expected in orbits with
larger eccentricities.

The motion of a satellite is determined by the local gravitational
field. The gravitational potential at a distance r from the center of
a sphere 1is

2
R
U=g— (24)

while the potential at a distance r from the center of the Earth can
be approximated by

3 )
R R (1 2 F R 4 2
U= gRl=— + J — (— - cos 9) + 2= = (35 cos™6 - 30 cos“6 + 3{] (25)
[r o \3 35 e

where

J = 1.837X107°
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F = 10.6x10°°

g = 32.146 ft/sec?

R

3963.26 miles

While equation (24) leads to an inverse-square central force, differen-
tiation of equation (25) gives a component of force in both the radial
and tangential directions. This noncentral force field leads to four
important variations in the motion of a satellite as compared with the
motion in an inverse-square central force field. It 1s these variations
that must be considered in the problem of rendezvous. The effects of
these variations on the ideal rendezvous will be given both for general
rendezvous and for the specific example of a rendezvous between a satel-
lite initially in a circular orbit at a radial distance of 4200 miles
with a satellite in a circular orbit at a distance of 4300 miles. Actu-
ally, as will be shown later, circular orbits are not possible for orbits
with inclinations greater than zero. The circular orbits referred to in
this section of the report are as close to true circular orbits as pos-
sible about an oblate planet. The expressions given herein for the vari-
ations are correct up to terms of order dJ-.

The first of these variations is a change in the period. The period,
if defined as the time elapsed between consecutive northward crossings of
the Equator, is

3 256 24 2
P = 21th 1 - Jg"R~ 11 cos”i 5 + 3e
g

(26)

where h is the angular momentum per unit mass. Equation (26) indicates
a decrease in period of amount

2 2.
AP = ZﬂiR 11 coz i->5 (27)

compared with the period for motion about a sphere. The change in period
AP is plotted in figure 7(a) as a function of 1 and r for a circular
orbit. For the specific rendezvous considered, the relative change in
periods due to oblateness is shown in figure 8(a). This difference is to
be subtracted from the difference in period (199 sec) due to the differ-
ent radial distances of the two satellites. The maximum change in the
relative periods is less than one-fifth of a percent of the total differ-
ence in period. This change can therefore be neglected in cases of ren-
dezvous requiring total times equal to a few periods if the satellite
orbits are originally within approximately 100 miles of each other. The
relative change in period becomes vanishingly small for orbits with in-
clinations between 45° and 50°.

AR
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In order to examine the other differences between satellite motion
about an oblate body and motion about a sphere, it is convenient to
think of both orbits as lying in a plane. The orbital plane for motion
about a sphere ig fixed. The second variation in the orbit due to
oblateness is a rotation of the orbital plane about the Earth's axis.
It is to be remembered that, although the orbital plane rotates, the
angle of inclination of the plane remains constant. The mean rate of
rotation in degrees per day is

20
%% = EEQE%JE- cos i (28)
Ph
where P 1s in days. The direction of the rotation is opposite the
direction of revolution of the satellite in its orbit. The rate of rota-
tion is plotted in figure 7(b) as a function of i and r for circular
orbits.

Although the orbital plane rotates, it is still possible to launch
satellites in orbits that are alt some time coplanar. The instantaneous
plane of the orbiting satellite will still pass over the launching pad
at least once a day. The time between passages can be computed allowing
for the rotation of the orbital plane. Since the rate of rotation of
the orbital plane depends on both the period and the angular momentum,
it will be different for satellites at different mean altitudes but with
the same angle of inclination. It is the difference in rate of rotation
that is important in rendezvous. Figure 8(b) shows this difference for
the specific example considered. This relative rotation is greatest for
an equatorial orbit where it is about 0.65° per day and reduces to zero
for a polar orbit. The relative rotation of 0.65° per day in this ex-
ample means a separation of about 48 miles per day or 3 miles per period.
This can be considered as a maximum value for two orbits differing in
altitude by 100 miles as the rate of rotation also decreases with in-
creasing altitude. Thus, only if the radial distances are greatly dif-
ferent will the difference in rate be appreciable. If the rendezvous is
to take place between satellites in the same orbit or if the rendezvous
is to take place very shortly after the maneuverable satellite is in
orbit, the effect of orbital rotation can be assumed negligible. If, on
the other hand, the rendezvous is between satellites in orbits with
greatly differing radial distances or will take place long after the
satellites are put into orbit, the difference in the orbital plane rota-
tion rates can be anticipated, and the maneuverable satellite can be
launched in a plane such that the two orbits will be coplanar at the
time of rendezvous.

The third variation is a rotation of the direction of the major
axis which is not present for motion about a sphere. The rate of rota-
tion in degrees per day is
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nb
a _ 180Jg%R6 ,. 2.
rli— (5 cos®i - 1) (29)

where P is in days. It should be noticed that since this rotation is

proportional to 5 coszi - 1 there will be no rotation for coszi = 1/5,

1= 63.40; and the rotation will be in the opposite direction for
greater i. The direction of rotation for i < 63.4° 4ig in the same
direction as the motion of the satellite in its orbit. A plot of dS/dt
is given in figure 7(c) as a function of i and r for circular orbits.

AAICE

The relative rate of rotation for the specific example considered
is shown in figure 8(c). The magnitude of the effect is larger than
that of the rotation rate of the plane and therefore must be taken into
consideration in rendezvous computations. This effect enters the prob-
lem of rendezvous principally in cases where the approach satellite is
in an elliptical orbit tangent to the circular orbit of the orbiting
satellite. Since the major axes are rotating, the point of tangency is
moving.

The fourth and final effect due to oblateness is a variation in the
radial distance. The radial distance is given by

2 6 2; _ . 2. '
- [? + e cos(V¥ - A) + ngR (? cosd - 5, sind g 24) +
h

i

ne 2 6

2n 6
5Je g"R . 2
~57 ny: sin“i cos(3V —'%ﬂ (30)

where V¥ is the angular distance from the point of maximum latitude in
the northern hemisphere and A is the angle ¥ measured to the perigee
point. The variation in radial distance for a circular orbit at an
assumed radial distance of 4400 miles is given in figure 9 as a function
of V¥ for various values of 1. The only case for which an actual cir-
cular orbit is possible is for 1 equal to zero. However, if two sat-
ellites have the same effective latitude, angular momentum, and radial
distance at a single given value of V¥, their orbits will be identical.
In general, the effect of variation in radial distance can be neglected
in rendezvous.

Thus, it is seen that while some of the effects due to the oblate-
ness of the Earth are small, they must be taken into consideration in
attempting a rendezvous. Similar effects will be observed when inter-
planetary vehicles are put into orbit about the other planets. The mag-
nitude of the effects will increase with increasing oblateness. However,
for planets with large values of oblateness such as Jupiter, Saturn,
Uranus, and Neptune, the effects due to oblateness may be considerably
different from those mentioned for the Earth. .
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CONCLUSIONS

A general study of the problems involved in performing a rendezvous
between two satellites or other space vehicles in orbit around a planet
is presented. The problem is simplified by assuming that the motion of
each satellite is obtained by a solution of the two-body problem, that
only one of the vehicles is maneuverable, and that all velocity incre-
ments other than for plane changes are added tangentially. Rendezvous
performed outside the atmosphere is the only case considered. The re-
sults are for orbits around a spherical planet; however, the effects on
these results due to an oblate planet are discussed. The oblateness
used is that of the Earth. The following conclusions were reached.

The most efficient method of rendezvous in terms of both total ve-
locity and time required is performed by launching the maneuverable ve-
hicle at such a time and with the necessary initial conditions that the
rendezvous is completed the instant the vehicle enters orbit. This type
of rendezvous is called direct rendezvous.

Direct rendezvous is limited in usefulness because of the rigid re-
quirements on times of launching of the maneuverable vehicle and the
possible periods for the nonmaneuverable vehicle.

Orbital rendezvous, where both vehicles are initially in orbit, is
not limited by the rigid requirements of direct rendezvous and is there-
fore of great importance.

If possible, the initial orbits should be coplanar before an orbital
rendezvous 1is attempted. DPlane changes requlre large velocity increments
and should be avoided.

A greater total velocity increment is required to transfer a vehicle
between circular orbits with radius ratios greater than about 3.2 than to
follow an esgcape trajectory from the inner orbit.

The total velocity increment required to bring together two vehicles
initially in the same orbit can be made very small if the time allowed
for the maneuver is not critical.

If the planet has the shape of an oblate spheroid rather than that
of a sphere, certain variations occur in the relative orbits of the ve-
hicles. The variations, although small in certain cases, must be taken
into consideration in attempting a rendezvous.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 16, 1359
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APPENDIX A

SYMBOLS
semimajor axis
defined in sketch (d)
centrifugal acceleration
distance
defined in sketch (&)
eccentricity
10.6x1076
universal gravitational constant
local constant of gravity
angular momentum per uhit mass
inclination of orbit
1.637x10™°
mass of planet
integer
number of revolutions
integer
period
equatorial radius of planet
radial distance
sidereal day

time

gravitational potential

AR
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dimensionless velocity

velocity

defined by eq. (5)

latitude of launching site

angle between initial and final orbital planes

angle through which major axis has rotated in orbital plane
angle between east and launching direction of satellite
defined by eq. (1)

angular separation between satellites as seen from center of
planet

angle between rotational axis and radial line

angle between point of maximum latitude in northern hemisphere
and perigee point

GM

angle between east and direction of orbit over launching site
ratio of outer to inner radii of circular orbits

angular distance of satellite from perigee point

angular distance of satellite from point of maximum latitude

angle through which orbital plane has rotated

Subscripts:

b

at distance b

circular

at distance 4

maneuverable satellite

nonmaneuverable satellite
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perigee

at surface of planet
at distance r
transfer orbit

orbit 1

orbit 2

22¢-u
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APPENDIX B

BURNOUT VELOCITY REQUIRED TO PLACE A SATELLITE IN A GIVEN
CIRCULAR ORBIT WHEN LAUNCHED FROM A SITE OFF THE EQUATOR

It can be shown that no increase in burnout velocity is necessary
when the launching site is off the equator for circular orbits with
angle of inclination greater than zero. The latitude of the launching
site must, however, be no greater than the angle of inclination of the
orbit. For simplicity, it is assumed that the latitude of the launch-
ing site and the latitude at which the satellite enters orbit are the
same.

Consider the burnout velocity required to establish a satellite in

a circular orbit with velocity Vo and angle of inclination i > 0. If

the planet were not rotating, it would be possible to put the satellite
into the given circular orbit from any launching site at latitude B < i
with the same burnout velocity. However, rotation of the planet intro-
duces a linear velocity VR to any satellite fired eastward from a
launching site on the equator. For the Earth, VR 1s approximately 1500
feet per second. At latitude @, the magnitude of this rotational ve-
locity is VR cos B.

To launch a satellite from a site at latitude B into the circular
orbit, the resultant velocity, a combination of burnout velocity and ve-
locity due to the rotation of the planet, must be equal to the circular
velocity v, and make an angle £ with the parallel of latitude in the

eastward direction. This is shown in sketch (e):

Launching site

(e)
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The velocity vector diagram which indicates the required burnout veloc-
ity is shown in sketch (£f). The required burnout velocity must be in a

vR cos B

()

direction making angle { with the eastward parallel of latitude and

have a magnitude vg. From sketch (),

vV, cos E

B

R COS B + vy cos

v, sin & = vy sin ¢

which gives

v% = VS - ZVRVb cos £ cos B + vé
and

Vo sin &

ten § = v, cos £ - VR cos B

From spherical trigonometry,

cos i .
cos & = EBE—E sin € = o5 b

which gives

2
v% = vg - 2v,v_ cos 1 + vﬁ cos B

R'e

tan § =

vc(coszﬁ - 00521)1/2

v . 2
c cos 1 - vg cos B

Examination of equation (B4) indicates that for a given

o

cosEB

1
(cosZB - coszi)

/2

i>0

(B1)

(B2)

(B3)

(B4)

(BS)

p

approaches 1, Vg becomes smaller, and, therefore, the maximum burnout

velocity is needed when the satellite is launched on the equator.

[AA]
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APPENDIX C

DERIVATION OF EQUATIONS FOR RENDEZVOUS BETWEEN CIRCULAR ORBITS

Equations (15) to (18) are derived as follows. The Av for chang-
ing from orbit 1 to the transfer orbit is, from equations (8) to (10):

AV:L:V -V

m,1 7 Ve,l

1 1 U
2 —) - 4 (c1)
J (rl 1F r2> 1

Dividing through by A\ and simplifying give
J

1
I
1

., (c2)

where p = rz/rl.

Likewise, to change from the transfer orbit to circular orbit 2:

Az = Ve,2 = VT,2

(c3)

il
]
-
E
S
1
R
+ |+
L2}
[nV]
~—

Dividing by Ve,1 and simplifying give

T 2r
AV, = U (Y A
I'z rl+r2
1 2
= -p(l- l+p) (c4)

During the time of transfer from the inner to the outer orbit, the
outer satellite will travel through an angular distance of 180 - ©;

degrees. The angular distance 1s equal to the time in the transfer
orbit times the rate of angular travel of the outer satellite:

Pp 260
180 - ®l,2 = = *f;—z—' (C5)
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Using equation (12) and simplifying,

r + T, 3/2
@1,2 = 180|1 - ——2;2—
J
or
3/2]
_ l+p
0,2 = 180[% - ( % ) (ce)

Likewise, during the time of transfer from the outer to the inner orbit,
the inner satellite will travel through an angular distance of
180 + 82,1 degrees and

180 + 6; 4 = (c7)

65,1 = lBO[(l—%—9>3/2 - %] (ce)
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Figure 8. - Relative variastions due to oblateness of
Earth between a circular orbit at a radius of 4200
miles and a circular orbit at a radius of 4300 miles.
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Figure 9. - Variation in radial distance due to oblateness

of Earth for circular orbit at a nominal radial distance
of 4400 miles.
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